Latest Post

Listrik Statis Dan Dinamis

Written By Unknown on Rabu, 11 Desember 2013 | 03.55

Konsep Dasar Listrik Statis
Listrik statis (electrostatic) membahas muatan listrik yang berada dalam keadaan diam (statis). Listrik statis dapat menjelaskan bagaimana sebuah penggaris yang telah digosok-gosokkan ke rambut dapat menarik potongan-potongan kecil kertas. Gejala tarik menarik antara dua buah benda seperti penggaris plastik dan potongan kecil kertas dapat dijelaskan menggunakan konsep muatan listrik.
Berdasarkan konsep muatan listrik, ada dua macam muatan listrik, yaitu muatan positif dan muatan negatif. Muatan listrik timbul karena adanya elektron yang dapat berpindah dari satu benda ke benda yang lain. Benda yang kekurangan elektron dikatakan bermuatan positif, sedangkan benda yang kelebihan elektron dikatakan bermuatan negatif. Elektron merupakan muatan dasar yang menentukan sifat listrik suatu benda.
Dua buah benda yang memiliki muatan sejenis akan saling tolak menolak ketika didekatkan satu sama lain. Adapun dua buah benda dengan muatan yang berbeda (tidak sejenis) akan saling tarik menarik saat didekatkan satu sama lain. Tarik menarik atau tolak menolak antara dua buah benda bermuatan listrik adalah bentuk dari gaya listrik yang dikenal juga sebagai gaya coulomb.
Gaya Coulomb
Gaya coulomb atau gaya listrik yang timbul antara benda-benda yang bermuatan listrik dipengaruhi oleh dua faktor, yaitu sebanding besar muatan listrik dari tiap-tiap benda dan berbanding terbalik dengan kuadrat jarak antara benda-benda bermuatan listrik tersebut.
gaya coulomb antara dua benda bermuatan listrik
gaya coulomb antara dua benda bermuatan listrik
Jika benda A memiliki muatan q1 dan benda B memiliki muatan q2 dan benda A dan benda B berjarak r satu sama lain, gaya listrik yang timbul di antara kedua muatan tersebut dapat dituliskan sebagai berikut
listrik01
Dimana
F adalah gaya listrik atau gaya coulomb dalam satuan newton k adalah konstanta kesebandingan yang besarnya 9 x 109 N m2 C–2 muatan q dihitung dalam satuan coulomb (C)
konstanta k juga dapat ditulis dalam bentuk
listrik02
dengan ε0 adalah permitivitas ruang hampa yang besarnya 8,85 x 10–12 C2 N–1 m–2
Gaya listrik merupakan besaran vektor sehingga operasi penjumlahan antara dua gaya atau lebih harus menggunakan konsep vektor, yaitu sesuai dengan arah dari masing-masing gaya. Secara umum, penjumlahan vektor atau resultan dari dua gaya listrik F1 dan F2 adalah sebagai berikut.
  1. untuk dua gaya yang searah maka resultan gaya sama dengan penjumlahan dari kedua gaya tersebut. Adapun, untuk dua gaya yang saling berlawanan, resultan gaya sama dengan selisih dari kedua gaya
(gambar)
R = F1 + F2 dan R = F1F2
2.untuk dua gaya yang saling tegak lurus, besar resultan gayanya adalah
listrik03 (gambar)
3untuk dua gaya yang membentuk sudut θ satu sama lain, resultan gayanya dituliskan sebagai berikut
listrik04
(gambar)
Untuk penjumlahan lebih dari dua gaya, perhitungannya dapat menggunakan metode analitis (lihat pembahasan tentang analisis vektor).
Medan Listrik
Sebuah muatan listrik dikatakan memiliki medan listrik di sekitarnya. Medan listrik adalah daerah di sekitar benda bermuatan listrik yang masih mengalami gaya listrik. Jika muatan lain berada di dalam medan listrik dari sebuah benda bermuatan listrik, muatan tersebut akan mengalami gaya listrik berupa gaya tarik atau gaya tolak.
Arah medan listrik dari suatu benda bermuatan listrik dapat digambarkan menggunakan garis-garis gaya listrik. Sebuah muatan positif memiliki garis gaya listrik dengan arah keluar dari muatan tersebut. Adapun, sebuah muatan negatif memiliki garis gaya listrik dengan arah masuk ke muatan tersebut.
Gambar
Besar medan listrik dari sebuah benda bermuatan listrik dinamakan kuat medan listrik. Jika sebuah muatan uji q’ diletakkan di dalam medan listrik dari sebuah benda bermuatan, kuat medan listrik E benda tersebut adalah besar gaya listrik F yang timbul di antara keduanya dibagi besar muatan uji. Jadi, dituliskan
listrik052dan F = E q’
Adapun kuat medan listrik dari sebuah benda bermuatan listrik q di suatu titik yang berjarak r dari benda tersebut dapat dituliskan sebagai berikut
listrik062Di sini kuat medan listrik dituliskan dalam satuan N/C.
Kuat medan listrik juga merupakan besaran vektor karena memiliki arah, maka penjumlahan antara dua medan listrik atau lebih harus menggunakan penjumlahan vektor. Arah medan listrik dari sebuah muatan positif di suatu titik adalah keluar atau meninggalkan muatan tersebut. Adapun, arah medan listrik dari sebuah muatan negatif di suatu titik adalah masuk atau menuju ke muatan tersebut.
Gambar
Dua plat sejajar yang bermuatan listrik dapat menyimpan energi listrik karena medan listrik timbul di antara dua plat tersebut. Kuat medan listrik di dalam dua plat sejajar yang bermuatan listrik adalah
listrik071Dimana
σ adalah rapat muatan dari plat yang memiliki satuan C/m2
ε0 adalah permitivitas ruang hampa
(gambar)(gambar)
Kita juga dapat menghitung kuat medan listrik dari sebuah bola konduktor berongga yang bermuatan listrik, yaitu sebagai berikut.
Di dalam bola (r < R), E = 0
Di kulit atau di luar rongga (r > R),
listrik081Energi Potensial Listrik
Dua buah benda bermuatan listrik yang terletak berdekatan akan mengalami gaya listrik di antara keduanya. Suatu usaha diperlukan untuk memindahkan (atau menggeser) salah satu muatan dari posisinya semula. Karena usaha merupakan perubahan energi, maka besar usaha yang diperlukan sama dengan besar energi yang dikeluarkan. energi dari muatan listrik disebut energi potensial listrik. Besar usaha (W) atau perubahan energi potensial listrik dari sebuah muatan uji q’ yang dipindahkan dari posisi r1 ke posisi r2 adalah
listrik09(gambar)
Dengan demikian, usaha atau energi potensial untuk memindahkan sebuah muatan uji q’ yang berjarak r dari sebuah muatan lain q ke jarak tak berhingga dapat dituliskan sebagai berikut
listrik10Dimana tanda minus berarti usaha yang dilakukan selalu melawan gaya tarik yang ada (biasanya usaha yang dilakukan adalah usaha untuk melawan gaya tarik antara dua muatan).
Potensial Listrik
Suatu muatan uji hanya dapat berpindah dari satu posisi ke posisi lain yang memiliki perbedaan potensial listrik sebagaimana benda jatuh dari tempat yang memiliki perbedaan ketinggian. Besaran yang menyatakan perbedaan potensial listrik adalah beda potensial. Beda potensial dari sebuah muatan uji q’ yang dipindahkan ke jarak tak berhingga dengan usaha W adalah
listrik11Dimana V adalah potensial listrik dengan satuan volt (V).
Beda potensial dari suatu muatan listrik di suatu titik di sekitar muatan tersebut dinyatakan sebagai potensial mutlak atau biasa disebut potensial listrik saja. Potensial listrik dari suatu muatan listrik q di suatu titik berjarak r dari muatan tersebut dapat dinyatakan sebagai berikut
listrik121Dari persamaan di atas tampak bahwa potensial listrik dapat dinyatakan dalam bentuk kuat medan listrik, yaitu
V = E r
Gambar
Berbeda dengan gaya listrik dan kuat medan listrik, potensial listrik merupakan besaran skalar yang tidak memiliki arah. Potensial listrik yang ditimbulkan oleh beberapa muatan sumber dihitung menggunakan penjumlahan aljabar. Untuk n muatan, potensial listriknya dituliskan sebagai berikut.
listrik13Catatan: tanda (+) dan (–) dari muatan perlu diperhitungkan dalam perhitungan potensial listrik.


Konsep Listrik Dinamis
Listrik Dinamis adalah listrik yang dapat bergerak. cara mengukur kuat arus pada listrik dinamis adalah muatan listrik dibagai waktu dengan satuan muatan listrik adalah coulumb dan satuan waktu adalah detik. kuat arus pada rangkaian bercabang sama dengan kuata arus yang masuk sama dengan kuat arus yang keluar. sedangkan pada rangkaian seri kuat arus tetap sama disetiap ujung-ujung hambatan. Sebaliknya tegangan berbeda pada hambatan. pada rangkaian seri tegangan sangat tergantung pada hambatan, tetapi pada rangkaian bercabang tegangan tidak berpengaruh pada hambatan. semua itu telah dikemukakan oleh hukum kirchoff yang berbunyi "jumlah kuat arus listrik yang masuk sama dengan jumlah kuat arus listrik yang keluar". berdasarkan hukum ohm dapat disimpulkan cara mengukur tegangan listrik adalah kuat arus × hambatan. Hambatan nilainya selalu sama karena tegangan sebanding dengan kuat arus. tegangan memiliki satuan volt(V) dan kuat arus adalah ampere (A) serta hambatan adalah ohm.
ARUS LISTRIK
Arus listrik adalah banyaknya muatan listrik yang disebabkan dari pergerakan elektron-elektron, mengalir melalui suatu titik dalam sirkuit listrik tiap satuan waktu. Arus listrik (I) yang mengalir melalui penghantar didefinisikan sebagai banyaknya muatan listrik
(Q) yang mengalir setiap satu satuan waktu (t).
I = Q/t
Secara matematis dapat dituliskan:
I    = arus listrik (A)
Q   = muatan listrik (C)
t    = selang waktu
Contoh cara menghitung arus listrik:
1.         Pada suatu penghantar mengalir muatan listrik sebanyak 60 coulomb selama 0,5 menit.
Hitung besar arus listrik yang mengalir pada penghantar tersebut ?
Penyelesaian:
Diketahui: Q = 60 C
                 t  = 0,5 menit
                    = 30 sekon
Ditanyakan: I = ........ ?
Dijawab:                   
I = Q/t  
I = 60 / 30
I = 2 ampere
Jadi besar kuat arus listrik yang mengalir pada penghantar 2 ampere.
Arus listrik dapat diukur dalam satuan Coulomb/detik atau Ampere. Contoh arus listrik dalam kehidupan sehari-hari berkisar dari yang sangat lemah dalam satuan mikroAmpere (μA) seperti di dalam jaringan tubuh hingga arus yang sangat kuat 1-200 kiloAmpere (kA) seperti yang terjadi pada petir. Dalam kebanyakan sirkuit arus searah dapat diasumsikan resistansi terhadap arus listrik adalah konstan sehingga besar arus yang mengalir dalam sirkuit bergantung pada voltase dan resistansi sesuai dengan hukum Ohm.
Arus listrik merupakan satu dari tujuh satuan pokok dalam satuan internasional. Satuan internasional untuk arus listrik adalah Ampere (A). Secara formal satuan Ampere didefinisikan sebagai arus konstan yang, bila dipertahankan, akan menghasilkan gaya sebesar 2 x 10-7 Newton/meter di antara dua penghantar lurus sejajar, dengan luas penampang yang dapat diabaikan, berjarak 1 meter satu sama lain dalam ruang hampa udara.
Fisika
Arus yang mengalir masuk suatu percabangan sama dengan arus yang mengalir keluar dari percabangan tersebut. i1 + i4 = i2 + i3
Untuk arus yang konstan, besar arus I dalam Ampere dapat diperoleh dengan persamaan:
I=Q/t
di mana I adalah arus listrik, Q adalah muatan listrik, dan t adalah waktu (time).
Sedangkan secara umum, arus listrik yang mengalir pada suatu waktu tertentu adalah
I =dQ/dt
Dengan demikian dapat ditentukan jumlah total muatan yang dipindahkan pada rentang waktu 0 hingga t melalui integrasi:
Sesuai dengan persamaan di atas, arus listrik adalah besaran skalar karena baik muatan Q maupun waktu t merupakan besaran skalar. Dalam banyak hal sering digambarkan arus listrik dalam suatu sirkuit menggunakan panah, salah satunya seperti pada diagram di atas. Panah tersebut bukanlah vektor dan tidak membutuhkan operasi vektor. Pada diagram di atas ditunjukkan arus mengalir masuk melalui dua percabangan dan mengalir keluar melalui dua percabangan lain. Karena muatan listrik adalah kekal maka total arus listrik yang mengalir keluar haruslah sama dengan arus listrik yang mengalir ke dalam sehingga i1 + i4 = i2 + i3. Panah arus hanya menunjukkan arah aliran sepanjang penghantar, bukan arah dalam ruang.
Arah arus
DeFinisi arus listrik yang mengalir dari kutub positif (+) ke kutub negatif (-) baterai (kebalikan arah untuk gerakan elektronnya)


  Pergerakan partikel bermuatan positif (muatan positif) atau disebut dengan istilah arus konvensional. Pembawa muatan positif tersebut akan bergerak dari kutub positif baterai menuju ke kutub negatif. Pada kenyataannya, pembawa muatan dalam sebuah penghantar listrik adalah partikel-partikel elektron bermuatan negatif yang didorong olehmedan listrik mengalir berlawan arah dengan arus konvensional. Sayangnya, dengan alasan sejarah, digunakan konvensi berikut ini:
Panah arus digambarkan searah dengan arah pergerakan seharusnya dari pembawa muatan positif, walaupun pada kenyataannya pembawa muatan adalah muatan negatif dan bergerak pada arah berlawanan.
Konvensi demikian dapat digunakan pada sebagian besar keadaan karena dapat diasumsikan bahwa pergerakan pembawa muatan positif memiliki efek yang sama dengan pergerakan pembawa muatan negatif.
Rapat arus
Rapat arus (bahasa Inggriscurrent density) adalah aliran muatan pada suatu luas penampang tertentu di suatu titik penghantar.]Dalam SI, rapat arus memiliki satuan Ampere per meter persegi (A/m2).
di mana I adalah arus pada penghantar, vektor J adalah rapat arus yang memiliki arah sama dengan kecepatan gerak muatan jika muatannya positif dan berlawan arah jika muatannya negatif, dan dA adalah vektor luas elemen yang tegak lurus terhadap elemen. Jika arus listrik seragam sepanjang permukaan dan sejajar dengan dA maka J juga seragam dan sejajar terhadap d
di mana A adalah luas penampang total dan J adalah rapat arus dalam satuan A/m2.
Kelajuan hanyutan
Saat sebuah penghantar tidak dilalui arus listrik, elektron-elektron di dalamnya bergerak secara acak tanpa perpindahan bersih ke arah mana pun juga. Sedangkan saat arus listrik mengalir melalui penghantar, elektron tetap bergerak secara acak namun mereka cenderung hanyut sepanjang penghantar dengan arah berlawanan dengan medan listrik yang menghasilkan aliran arus. Tingkat kelajuan hanyutan (bahasa Inggrisdrift speed) dalam penghantar adalah kecil dibandingkan dengan kelajuan gerak-acak, yaitu antara 10-5 dan 10-4 m/s dibandingkan dengan sekitar 106 m/s pada sebuah penghantar tembaga.
TEGANGAN LISTRIK
Sumber tegangan listrik yaitu peralatan yang dapat menghasilkan beda potensial listrik secara terus menerus. Beda potensial listrik diukur dalam satuan volt (V).  Alat yang digunakan adalah volmeter.
Beda potensial adalah usaha yang digunakan untuk memindahkan satuan  muatan listrik . hubungan antara energi listrik, muatan listrik dan beda potensial dapat dituliskan dalam persamaan:
V= W/ Q
V = Beda potensial listrik dalam volt (V)
W = energi listrik dalam joule (J)
Q = muatan listrik dalam coulomb (C).
Arus listrik hanya akan terjadi dalam penghantar jika antara ujung-ujung penghantar terdapat beda potensial (tegangan listrik). Alat ukur beda potensial listrik adalah volmeter. Dalam rangkaian voltmeter dipasang paralel dengan hambatan (beban).
Contoh, Beda potensial antara ujung penghantaradalah 12 volt, hitunglah besarnya energi listrik jika jumlah muatan yang mengalir sebesar 4 coulomb.
Diketahui:
V = 12 volt
Q = 4 C
W = ?
Jawab:
W = V. Q
W = 12 volt x 4 C
W = 48 joule
Dalam rangkaian tertutup pemasangan voltmeter dan amperemeter dapat dilakukan bersama-sama. Voltmeter dipasang paralel terhadap hambatan dan amperemeter dipasang seri terhadap hambatan. Di laboratorium volmeter dapat dibuat dari rangkaian basic mater dan multiplier, sedangkan ampere meter dapat di buat dari rangkaian basic meter dan shun. Baik shun maupun multiplier memiliki batas ukur. Oleh karena itu dalam pembacaan sekalanya perlu diperhatikan antara batas ukur dan pembacaan pada skala basic meter. Berikut ini cara menggunakan basic meter dan cara pembacaannya.
Dalam rangkaian listrik, volt meter dipasang paralel terhadap alat listrik.
Jika voltmeternya dengan menggunakan kombinasi basic meter dan multiplier, maka pembacaan hasil pengukurannya perlu memperhatikan sekala maksimum dan batas ukurnya.
Batas ukur maksimumnya = 10 volt
Sekala maksimumnya = 30 volt
Pengukuran dengan menggunakan basic mater dan multiplier yang memiliki spesifikasi sebagai berikut:
Contoh, Batas ukur multiplier adalah 12 volt, skala maksimum basik meter adalah 120 volt, jika jarum pada saat digunakan menunjukkan angka 40, maka hitunglah besrnya tegangan listrik yang terukur
Diketahui:
Batas ukur : 12 volt
Skala maksimum : 120 volt
Pembacaan skala = 40
Jawab:
Hasil pengukuran  = (12/120) x 40 volt
                           = 0,1 x 40 volt
                           = 4 volt
HUKUM OHM
Hukum Ohm merupakan hukum dasar dalam rangkaian elektronik. Hukum Ohm menjelaskan hubungan antara tegangan, kuat arus dan hambatan listrik dalam rangkaian.
Besarnya tegangan listrik dalam sebuah rangkaian sebanding dengan kuat arus listrik. Pernyataan ini di kenal sebagai hukum Ohm. Hal ini  menyatakan bahwa tegangan listrik dalam rangkaian akan bertambah jika arus yang mengalir dalam rangkaian bertambah. Hubungan tersebut dapat di tuliskan dalam persamaan matematika.
V ~ I atau
V = R I (Hukum Ohm)
R adalah konstanta yang disebut hambatan penghantar, satuannya adalah ohm (W)
Contoh, Arus listrik sebesar 2 A mengalir dalam rangkaian yang memiliki hambatan sebesar 2 ohm, hitunglah besarnya beda potensial antara ujung-ujung hambatan tersebut.
Diketahui:
I = 2 A
R = 2 ohm
V = ?
Jawab:
V = I x R
V = 2 A x 2 ohm
V = 4 volt
Jika dalam hambatan R mengalir arus listrik I, maka antara ujung-ujung hambatan timbul beda potensial V.     
V = IR
Jika diantara ujung-ujung hambatan R terdapat beda potensial V, maka dalam hambatan pasti mengalir arus listrik I
I = V/R
Jika arus listrik I mengalir dalam suatu penghantar dan antara ujung-ujung penghantar muncul beda potensial V, maka dalam penghantar tersebut terdapat hambatan. 
R = V/I

Polimer

Written By Unknown on Selasa, 10 Desember 2013 | 02.05

1.  Definisi Polimer
Kata polimer berasal dari bahasa Yunani, yaitu poly dan meros. Poly berarti banyak dan meros berarti unit aatu bagian. Jadi polimer adalah makromolekul (molekul raksasa) yang tersusun dari monomer yang merupakan molekul yang kecil dan sederhana.
2.  Penggolongan Polimer
a)    Berdasarkan Asalnya
1)   Polimer alam
adalah polimer yang terbentuk secara alami di dalam tubuh makhluk hidup.
Tabel beberapa contoh polimer alam
No.
Polimer
Monomer
Polimerisasi
Terdapat pada
 1.
Amilum Glukosa Kondensasi Biji-bijian,akar umbi
2.
Selulosa Glukosa Kondensasi Sayur, kayu, kapas
3.
Protein Asam amino Kondensasi Susu,daging,telur, wol, sutera
4.
Asam nukleat Nukleotida Kondensasi Molekul DNA, RNA
5.
Karet alam Isoprene Adisi Getah karet alam
2)   Polimer semi sintetis
adalah polimer yang diperoleh dari hasil modifikasi polimer alam dan bahan kimia.
Contoh : selulosa nitrat yangsering dipasarkan dengan nama celluloid dan guncotton.
3)   Polimer sintetis
adalah polimer yang tidak terdapat di alam, tetapi disintesis dari monomer-monomernya dalam reaktor.
Tabel beberapa contoh polimer sintetis
No.
Polimer
Monomer
Polimerisasi
Terdapat pada
1.
Polietena Etena Adisi Kantung,kabel plastik
2.
Polipropena Propena Adisi Tali,karung,botol plastik
3.
PVC Vinil klorida Adisi Pipa pralon,pelapis lantai, kabel listrik
4.
Polivinil alkohol Vinil alkohol Adisi Bak air
5.
Teflon Tetrafluoro etena Adisi Wajan,panci anti lengket
6.
Dakron Metal tereftalat dan etilen glikol Kondensasi Pita rekam magnetik, kain,tekstil,wol sintetis
7.
Nilon Asam adipat dan heksametilen diamin Kondensasi Tekstil
8.
Polibutadiena Butadiena Adisi Ban motor, mobil
b)   Berdasarkan Jenis Monomernya
1)   Homopolimer
adalah polimer yang tersusun dari monomer-monomer yang sama atau sejenis.
Contoh : PVC, protein, karet alam, polivinil asetat (PVA), polistirena, amilum, selulosa, dan teflon.
2)   Kopolimer
adalah polimer yang tersusun dari monomer-monomer yang berlainan jenis. Berdasarkan susunan monomernya, terdapat empat jenis kopolimer sebagai berikut.
a)    Kopolimer bergantian
b)   Kopolimer blok
c)    Kopolimer bercabang
d)   Kopolimer tidak beraturan
c)    Berdasarkan Sifat terhadap Pemanasan atau Sifat Kekenyalannya
1)   Termoplastik
adalah polimer yang bersifat kenyal atau liat jika dipanaskan dan dapat dibentuk menurut pola yang diinginkan. Setelah dingin, polimer menjadi keras dan kehilangan sifat kekenyalannya. Contoh : polietilena, PVC, seluloid, polistirena, polipropilena, asetal, vinil, nilon dan Perspex.
2)   Termosetting
adalah polimer yang bersifat kenyal saat dipanaskan, tetapi setelah dingin tidak dapat dilunakkan kembali. Jika pecah, polimer tersebut tidak dapat disambungkan kembali dengan pemanasan. Contoh : bakelit, uretana, epoksi, polyester, dan formika.
d)   Berdasarkan Bentuk Susunan Rantainya
1)   Polimer linear
adalah polimer yang tersusun dengan unit ulang berikatan satu sama lainnya :membentuk rantai polimer yang panjang.
Gambar :
2)   Polimer bercabang
adalah polimer yang terbentuk jika beberapa unit ulang membentuk cabang pada rantai utama.
Gambar :
3)   Polimer berikatan silang (Cross-linking)
adalah polimer yang terbentuk karena beberapa rantai polimer saling berikataan satu sama lain pada rantai utamanya. Sambungan silang dapat terjadi ke berbagai arah sehingga terbentuk sambung silang tiga dimensi yang disebut polimer jaringan.
Gambar :
e)    Berdasarkan Apilkasinya
1)   Polimer komersial
adalah polimer yang disintesis dengan harga murah dan diproduksi secara besar-besaran.
Contoh : polietilena, polipropilena, pilivinil klorida dan polistirena.
2)   Polimer teknik
adalah polimer yang mempunyai sifat unggul tetapi harganya mahal.
Contoh : poliamida, polikarbonat, asetal, dan polyester.
3)   Polimer dengan tujuan khusus
adalah polimer yang mempunyai sifat spesifik yang unggul dan dibuat untuk keperluan khusus.
Contoh : alat-alat kesehatan seperti thermometer atau timbangan.
3.  Sifat-sifat Polimer
Beberapa faktor yang mempengaruhi sifat fisik polimer sebagai berikut.
a)    Panjang rata-rata rantai polimer
Kekuatan dan titik leleh naik dengan bertambah panjangnya rantai polimer.
b)   Gaya antarmolekul
Jika gaya antar molekul pada rantai polimer besar maka polimer akan menjadi kuat dan sukar meleleh.
c)    Percabangan
Rantai polimer yang bercabang banyak memiliki daya tegang rendah dan mudah meleleh.
d)   Ikatan silang antar rantai polimer
Ikatan silang antar rantai polimer menyebabkan terjadinya jaringan yang kaku dan membentuk bahan yang keras. Jika ikatan silang semakin banyak maka polimer semakin kaku dan mudah patah.
e)    Sifat kristalinitas rantai polimer
Polimer berstruktur tidak teratur memil;iki kristanilitas rendah dan bersifat amorf (tidak keras). Sedangkan polimer dengan struktur teratur mempunyai kristanilita tinggi sehingga lebih kuat dan lebih tahan terhadap bahaan-bahan kimia dan enzim.
4.  Reaksi-reaksi Polimer
Reaksi polimerisasi yaitu reaksi penggabungan sejumlah monomer menjadi polimer. Polimerisasi dibedakan menjadi dua macam sebagai berikut.
a)    Polimerisasi adisi
adalah reaksi pembentukan polimer dari monomer-monomer yang berikatan rangkap menjadi ikatan tunggal.
Polimerisasi adisi dibedakan menjadi dua sebagai berikut.
1)        Polimerisasi adisi alami
Polimerisasi adisi alami misalnya pembentukan karet alam atau poliisoprena. Monomernya berupa isoprene atau senyawa 2-metil-1,3-butadiena.
2)        Polimerisasi adisi sintesis
Contoh : pembentukan PVC, polipropena, Teflon, polifenil etena atau polistirena, dan polietilena.
b)   Polimerisasi kondensasi
yaitu reaksi yang terjadi jika dua atau lebih monomer sejenis atau berbeda jenis bergabung membentuk molekul besar sambil melepaskan molekul-molekul kecil seperti H2O, NH3, dan HCl.
Polimerisasi kondensasi dibagi menjadi dua sebagai berikut.
1)        Polimerisasi kondensasi alami
Contoh : pembentukan selulosa, amilum dan protein.
2)        Polimerisasi kondensasi sintesis
Contoh : pembentukan nilon, tetoron, bakelit, dan urea-metanal.
5.  Kegunaan Polimer
No.
Polimer
Monomer
Sifat
Kegunaan
1.
Polietena Etena Lentur Botol semprot, tas plastik, kabel, ember, tempat sampah dan film plastik (pembungkus makanan)
2.
Polipropilena Propena Keras dan titik leleh tinggi Karpet, tali, wadah plastik, dan mainan anak-anak
3.
Polivinil klorida Vinil klorida Kaku dan keras Pipa air dan pipa kabel listrik (paralon)
4.
PolistirenaPolifenil etena Fenil etena Tahan terhadap tekanan tinggi Plastik pada kendaraan dan pesawat terbang, genting, cangkir, mangkuk, dan mainan
5.
Poliamida (nilon) Asam adipat dan heksametilen diamina Kuat (tidak cepat rusak) dan halus Pakaian, peralatan camping, laboratorium, rumah tangga, dapur, parasut, layar perahu
6.
PolitetrafluoroEtena (PTFE)Atau Teflon Tetrafluoro etena Keras, kaku, tahan panas dan bahan kimia Pelapis anti lengket dan wajan anti lengket
7.
Bakelit FormaldehidDan fenol Termoset Peralatan listrik (saklar), perlengkapan radio, telepon, kamera, piring, dan gelas
Dampak Negatif Penggunaan Polimer dan Penganggulanginya
Disamping memiliki manfaat yang sangat besar dalam semua bidang kehidupan, polimer juga mempunyai dampak negatif terhadap lingkungan dan kesehatan. Polimer yang dibuang ke lingkungan sulit diuraikan olek mikroorganisme tanah. Hal ini menyebabkan pencemaran lingkungan. Sementara itu, gugus atom pada polimer yang terlarut di dalam makanan lalu masuk ke dalam tubuh akan menyebabkan kanker (karsinogenik). Dampak negatif tersebut dapat ditanggulangi jika kita mengurangi pemakaian polimer plastik, tidak membuang sampah di sembarang tempat, memilih alat-alat yang lebih mudah diuraikan dan mengumpulkan sampah plastik untuk didaur ulang. Daur ulang plastik melalui proses pirolisis. Pirolisis adalah proses pemecahan senyawa menjadi satu atau lebih senyawa hasil dengan bantuan panas dalam reaktor.

Total Pengunjung

Profil